This website uses cookies to ensure you have the best experience, or you can choose to decline. learn more

  • MRI stereotaxic instrument

MRI Stereotaxic Instruments

  • MRI Stereotaxic Instruments have all the functions of Standard Stereotaxic Instruments. The dog/monkey adaptor is configured to into the front end of the animal’s hearing organ through a ear bars for accurate and firm fixation of the animal. The animal is held in place by the adjustable eye bar and upper jaw plate to prevent head rotation. All parts of this device are made of specific non-metallic materials, which are specially used in animal experiments under nuclear magnetic environment. It has a good fixation effect and meets the unique needs of accurate positioning of animal heads in brain science research experiments.

Technical Specifications

  • Technical Parameters
  • Model information
  • Manual
  • Accessories

1. Completely plastic materials, MRI compatible, also suitable for nuclear environment

2. Adaptors are available for dogs, monkeys, pigs, and other large animals.

3. Y-axis slide design, longer moving range: ± 100mm, 1mm resolution. Optional AP Micro-driver, the resolution of Y-axis promoted to 50μm.

4. Frame bar centerline distance: 178.5mm

5. Holds up to six manipulator arms for more independent operations.

6. Unique jaw plate design better stabilizes the heads of large animals of varying weights

7. Extended base plate (420mm x 200mm) is applicable for a variety of animal sizes.

8. Laser engraved scales enable comfortable reading.

9. Ear bar locked plate pressing instead of clamping ensures more stability.

Model Product Description
68915 MRI Compatible Stereotaxic for Dog/Monkey/68081/Base Plate(Customized)
68941 2-axis Manip for Dog/Monkey Stereotaxic, Left Hand
68942 2-axis Manip for Dog/Monkey Stereotaxic, Right Hand
68024 2-axis Digital Readout for Upgrade-68000
68944 2-axis Digital Manip for Dog/Monkey Stereotaxic, Left Hand
68945 2-axis Digital Manip for Dog/Monkey Stereotaxic, Right Hand
68104 AP-Microdriver (50um)

Articles

  1. Diao, Y., Cui, L., Chen, Y., Burbridge, T. J., Han, W., Wirth, B., … & Zhang, J. (2018). Reciprocal connections between cortex and thalamus contribute to retinal axon targeting to dorsal lateral geniculate nucleus. Cerebral Cortex, 28(4), 1168-1182.
  2. Fan, X. C., Fu, S., Liu, F. Y., Cui, S., Yi, M., & Wan, Y. (2018). Hypersensitivity of prelimbic cortex neurons contributes to aggravated nociceptive responses in rats with experience of chronic inflammatory pain. Frontiers in molecular neuroscience, 11, 85.
  3. Liu, Y., Lai, S., Ma, W., Ke, W., Zhang, C., Liu, S., … & Shu, Y. (2017). CDYL suppresses epileptogenesis in mice through repression of axonal Nav1. 6 sodium channel expression. Nature communications, 8(1), 1-17.
  4. Tang, Y., Lin, Y. H., Ni, H. Y., Dong, J., Yuan, H. J., Zhang, Y., … & Chang, L. (2017). Inhibiting Histone Deacetylase 2 (HDAC 2) Promotes Functional Recovery From Stroke. Journal of the American Heart Association, 6(10), e007236.
  5. Huang, L., Yuan, T., Tan, M., Xi, Y., Hu, Y., Tao, Q., … & Luo, M. (2017). A retinoraphe projection regulates serotonergic activity and looming-evoked defensive behaviour. Nature communications, 8(1), 1-13.
  6. Zhu, M., Li, H., Gyanwali, B., He, G., Qi, C., Yang, X., … & Tang, A. (2017). Auditory brainstem responses after electrolytic lesions in bilateral subdivisions of the medial geniculate body of tree shrews. Neurological Sciences, 38(9), 1617-1628.
  7. Lei, Z., Wang, D., Chen, N., Ma, K., Lu, W., Song, Z., … & Wang, J. H. (2017). Synapse innervation and associative memory cell are recruited for integrative storage of whisker and odor signals in the barrel cortex through miRNA-mediated processes. Frontiers in cellular neuroscience, 11, 316.
  8. Zhou, H., Xiong, G. J., Jing, L., Song, N. N., Pu, D. L., Tang, X., … & Richter-Levin, G. (2017). The interhemispheric CA1 circuit governs rapid generalisation but not fear memory. Nature communications, 8(1), 1-10.
  9. Zhang, J., Liu, H., Du, X., Guo, Y., Chen, X., Wang, S., … & Zhang, W. (2017). Increasing of blood-brain tumor barrier permeability through transcellular and paracellular pathways by microbubble-enhanced diagnostic ultrasound in a C6 glioma model. Frontiers in neuroscience, 11, 86.
  10. Li, G. F., Zhao, H. X., Zhou, H., Yan, F., Wang, J. Y., Xu, C. X., … & Zhang, H. L. (2016). Improved anatomical specificity of non-invasive neuro-stimulation by high frequency (5 MHz) ultrasound. Scientific reports, 6(1), 1-11.
  11. Liu, M. G., Li, H. S., Li, W. G., Wu, Y. J., Deng, S. N., Huang, C., … & Xu, T. L. (2016). Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms. Scientific reports, 6, 23350.
  12. Zhao, Baisong, et al. “Hyperbaric oxygen pretreatment improves cognition and reduces hippocampal damage via p38 mitogen-activated protein kinase in a rat model.” Yonsei medical journal 58.1 (2017): 131-138.
  13. Zhao, Yunan, et al. “Decreased glycogen content might contribute to chronic stress-induced atrophy of hippocampal astrocyte volume and depression-like behavior in rats.” Scientific reports 7 (2017): 43192.
  14. Espinosa, P., Silva, R. A., Sanguinetti, N. K., Venegas, F. C., Riquelme, R., González, L. F., … & Sotomayor-Zárate, R. (2016). Programming of dopaminergic neurons by neonatal sex hormone exposure: effects on dopamine content and tyrosine hydroxylase expression in adult male rats. Neural plasticity, 2016.
  15. Li, Wei-Guang, et al. “ASIC1a regulates insular long-term depression and is required for the extinction of conditioned taste aversion.” Nature communications 7.1 (2016): 1-15.
  16. Wang, G. Q., Cen, C., Li, C., Cao, S., Wang, N., Zhou, Z., … & Wang, J. (2015). Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety. Nature communications, 6(1), 1-16.

Related Products

Have Any Questions?

Send Us A Message

  • 1.Fill in the form and our experts will get back to you ASAP!
  • 2.Ask about An Equipment
  • 3.Wondering which equipment to conduct your researches or perform your experiments? Our sales reps will try their best to share their knowledge with you!
  • 4.Get Technical Support
  • 5.An RWD equipment is not performing? Talk to our support team to get instant feedback!

Contact Us

Top
Contact

Contact Us